Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            The solar wind (SW) is a vital component of space weather, providing a background for solar transients such as coronal mass ejections, stream interaction regions, and energetic particles propagating toward Earth. Accurate prediction of space weather events requires a precise description and thorough understanding of physical processes occurring in the ambient SW plasma. Ensemble simulations of the three-dimensional SW flow are performed using an empirically-driven magnetohydrodynamic heliosphere model implemented in the Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS). The effect of uncertainties in the photospheric boundary conditions on the simulation outcome is investigated. The results are in good overall agreement with the observations from the Parker Solar Probe, Solar Orbiter, Solar Terrestrial Relations Observatory, and OMNI data at Earth, specifically during 2020-2021. This makes it possible to shed more light on the properties of the SW propagating through the heliosphere and perspectives for improving space weather forecasts.more » « lessFree, publicly-accessible full text available April 28, 2026
- 
            Unmanned aerial vehicles (UAVs) are widely used for various applications, such as military surveillance and reconnaissance; delivery of packages; monitoring of plants and buildings; and search and rescue. Besides basic battery-electric propulsion, in order to improve range and endurance, hybrid electric propulsion systems based on combinations of batteries, fuel cells, solar cells, and ultracapacitors are increasingly being applied to these UAVs. For small- and medium-scale UAVs, the solar and fuel cell converters have non-isolated DC-DC converters that include a high-frequency switching device. In this paper, a novel switch fault detection technique based on virtual admittance is proposed for DC-DC converters. A fault index function is formulated based on the virtual admittance to minimize potential influence by highly dynamic load change while reducing computation complexity to implement the technique in cost-effective UAVs. The proposed technique has been verified by simulations and experiments to validate the feasibility of the approach.more » « less
- 
            BLDC motors are widely employed in various applications because of their high efficiency, reliability, and long operational life. For BLDC motors, any electric malfunctions in the commutation signal creation with or without Hall sensors can lead to unexpected vibrations, crashes, and accidents according to application areas. Therefore, fast detection and diagnosis of these faults are crucial for the reliable operation of BLDC motor drive systems. In this paper, a unique approach has been explored for developing fault signatures to detect commutation signal faults accurately and rapidly in the BLDC motor drive system under highly dynamic loads. After the fault detection, a commutation signal is indirectly reconstructed based on healthy commutation signals to continuously drive the motor drive system to avoid serious electrical and mechanical issues due to the faults. The proposed approach and feasibility of the method have been verified both by simulation and experimental studies. The results of the proposed method will significantly improve the accuracy of the commutation signal fault detection and eventually enhance the reliability of the BLDC motor drive.more » « less
- 
            It is undeniable that novel 2D devices and heterostructures will have a lasting impact on the advancement of future technologies. However, the inherent instability of many exfoliated van der Waals (vdW) materials is a well-known hurdle yet to be overcome. Thus, the sustained interest in exfoliated vdW materials underscores the importance of understanding the mechanisms of sample degradation to establish proactive protective measures. Here, the impact of prolonged synchrotron-based X-ray beam exposure on exfoliated flakes of two contemporary vdW materials, and - , is explored using resonant inelastic X-ray scattering (RIXS) and total fluorescence yield X-ray absorption spectroscopy (XAS). In , the resulting RIXS and XAS spectra show a suppression, then vanishing, of NiS6multiplet excitations coupled with an upward shift of the peak energy of the XAS as a function of X-ray dose. In - , the signs of beam damage from the RIXS spectra are less evident. However, the post-experiment characterization of both materials using Raman spectroscopy exhibits signals of an amorphous and disordered system compared to pristine flakes; in addition, energy-dispersive X-ray spectroscopy of shows evidence of ligand vacancies. As synchrotron radiation is fast becoming a required probe to study 2D vdW materials, these findings lay the groundwork for the development of future protective measures for synchrotron-based prolonged X-ray beam exposure, as well as for X-ray free electron laser.more » « lessFree, publicly-accessible full text available June 25, 2026
- 
            Cai, Ming Bo (Ed.)A major advance in understanding learning behavior stems from experiments showing that reward learning requires dopamine inputs to striatal neurons and arises from synaptic plasticity of cortico-striatal synapses. Numerous reinforcement learning models mimic this dopamine-dependent synaptic plasticity by using the reward prediction error, which resembles dopamine neuron firing, to learn the best action in response to a set of cues. Though these models can explain many facets of behavior, reproducing some types of goal-directed behavior, such as renewal and reversal, require additional model components. Here we present a reinforcement learning model, TD2Q, which better corresponds to the basal ganglia with two Q matrices, one representing direct pathway neurons (G) and another representing indirect pathway neurons (N). Unlike previous two-Q architectures, a novel and critical aspect of TD2Q is to update the G and N matrices utilizing the temporal difference reward prediction error. A best action is selected for N and G using a softmax with a reward-dependent adaptive exploration parameter, and then differences are resolved using a second selection step applied to the two action probabilities. The model is tested on a range of multi-step tasks including extinction, renewal, discrimination; switching reward probability learning; and sequence learning. Simulations show that TD2Q produces behaviors similar to rodents in choice and sequence learning tasks, and that use of the temporal difference reward prediction error is required to learn multi-step tasks. Blocking the update rule on the N matrix blocks discrimination learning, as observed experimentally. Performance in the sequence learning task is dramatically improved with two matrices. These results suggest that including additional aspects of basal ganglia physiology can improve the performance of reinforcement learning models, better reproduce animal behaviors, and provide insight as to the role of direct- and indirect-pathway striatal neurons.more » « less
- 
            Abstract The ICARUS-T600 Liquid Argon Time Projection Chamber is operating at Fermilab at shallow depth and thus exposed to a high flux of cosmic rays that can fake neutrino interactions. A cosmic ray tagging (CRT) system (∼ 1100 m2), surrounding the cryostat with two layers of fiber embedded plastic scintillators, was developed to mitigate the cosmic ray induced background. Using nanosecond-level timing information, the CRT can distinguish incoming cosmic rays from outgoing particles from neutrino interactions in the TPC. In this paper an overview of the CRT system, its installation and commissioning at Fermilab, and its performance are discussed.more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            Abstract Failure to direct axon regeneration to appropriate targets is a major barrier to restoring function after nerve injury. Development of strategies that can direct targeted regeneration of neurons such as retinal ganglion cells (RGCs) are needed to delay or reverse blindness in diseases like glaucoma. Here, we demonstrate that a new class of asymmetric, charge balanced (ACB) waveforms are effective at directing RGC axon growth, in vitro, without compromising cell viability. Unlike previously proposed direct current (DC) stimulation approaches, charge neutrality of ACB waveforms ensures the safety of stimulation while asymmetry ensures its efficacy. Furthermore, we demonstrate the relative influence of pulse amplitude and pulse width on the overall effectiveness of stimulation. This work can serve as a practical guideline for the potential deployment of electrical stimulation as a treatment strategy for nerve injury.more » « less
- 
            Abstract The absorption by neutral hydrogen in the intergalactic medium (IGM) produces the Ly α forest in the spectra of quasars. The Ly α forest absorbers have a broad distribution of neutral hydrogen column density N H I and Doppler b parameter. The narrowest Ly α absorption lines (of lowest b ) with neutral hydrogen column density above ∼10 13 cm −2 are dominated by thermal broadening, which can be used to constrain the thermal state of the IGM. Here we constrain the temperature-density relation T = T 0 ( ρ / ρ ¯ ) γ − 1 of the IGM at 1.6 < z < 3.6 by using N H I and b parameters measured from 24 high-resolution and high-signal-to-noise quasar spectra and by employing an analytic model to model the N H I -dependent low- b cutoff in the b distribution. In each N H I bin, the b cutoff is estimated using two methods, one non-parametric method from computing the cumulative b distribution and a parametric method from fitting the full b distribution. We find that the IGM temperature T 0 at the mean gas density ρ ¯ shows a peak of ∼1.5 × 10 4 K at z ∼ 2.7–2.9. At redshift higher than this, the index γ approximately remains constant, and it starts to increase toward lower redshifts. The evolution in both parameters is in good agreement with constraints from completely different approaches, which signals that He ii reionization completes around z ∼ 3.more » « less
- 
            Conventionally, the size, shape, and biomechanics of cartilages are determined by their voluminous extracellular matrix. By contrast, we found that multiple murine cartilages consist of lipid-filled cells called lipochondrocytes. Despite resembling adipocytes, lipochondrocytes were molecularly distinct and produced lipids exclusively through de novo lipogenesis. Consequently, lipochondrocytes grew uniform lipid droplets that resisted systemic lipid surges and did not enlarge upon obesity. Lipochondrocytes also lacked lipid mobilization factors, which enabled exceptional vacuole stability and protected cartilage from shrinking upon starvation. Lipid droplets modulated lipocartilage biomechanics by decreasing the tissue’s stiffness, strength, and resilience. Lipochondrocytes were found in multiple mammals, including humans, but not in nonmammalian tetrapods. Thus, analogous to bubble wrap, superstable lipid vacuoles confer skeletal tissue with cartilage-like properties without “packing foam–like” extracellular matrix.more » « lessFree, publicly-accessible full text available January 10, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available